Topological Sort
 and Lowest Common Ancestor

Mohammed Yaseen Mowzer

17 April 2015

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm

- Recursive algorithm
- Analysis

4 Example Problem

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm

- Recursive algorithm
- Analysis

4 Example Problem

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm

- Iterative algorithm
- Recursive algorithm
- Analysis

4 Example Problem

Directed Acyclic Graphs (DAGs)

Definition

A Directed Acyclic Graph (DAG) is a graph such that

- all of its edges are directed
- there exist no cycles

A DAG is not a Forest

Forest	DAG
Edges are undirected	Edges are directed
Each node has one parent	Each node can have multi- ple parents
At most one path between	Multiple paths between any two points.
any two points	No cycles

What do DAGs represent

A DAG can be used to represent any transitive relation.

Definition

An operation, \circ is transitive if for any a, b, c, if $a \circ b$ and $b \circ c$ then $a \circ c$.

For example

- An ordering $a<b$ and $b<c$ then $a<c$.
- If a requires b and b requires c then a requires c

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm

- Iterative algorithm
- Recursive algorithm
- Analysis

4 Example Problem

Git

Family Tree DAG

Compilation dependencies

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm

- Recursive algorithm
- Analysis

4 Example Problem

What is topological sort?

Definition

A topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge $u v$ from vertex u to vertex v, u comes before v in the ordering - Wikipedia

What is topological sort?

Definition

A topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge $u v$ from vertex u to vertex v, u comes before v in the ordering - Wikipedia

What is topological sort?

Definition

A topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge $u v$ from vertex u to vertex v, u comes before v in the ordering - Wikipedia

What is topological sort?

The topological ordering is the sequence in which tasks need to be completed so that all dependencies are satisfied.

Properties of a Topological ordering

$$
a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f
$$

Properties of a Topological ordering

$$
a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f
$$

- It is trivially reversible.

$$
a \leftarrow b \leftarrow c_{K} d \leftarrow e \leftarrow f
$$

Properties of a Topological ordering

$$
a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f
$$

- It is trivially reversible.

$$
a \leftarrow b \leftarrow c_{\kappa} d \leftarrow e \leftarrow f
$$

- There may be multiple orderings.

$$
a \rightarrow b \rightarrow d{ }^{\prime} c e \rightarrow f
$$

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm

- Recursive algorithm
- Analysis

4 Example Problem

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm

- Recursive algorithm
- Analysis

4 Example Problem

Iterative (Khan's?) algorithm

L = List (will contain topological ordering)
S = List of nodes with no incoming edges
while S is non-empty do
remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do remove edge e from the graph
if m has no other incoming edges then insert m into S
if graph has edges then return error (graph has at least one cycle)
else return L (a topologically sorted order)

Explanation

1 Find a node n with no unsatisfied dependencies (incoming edges).
2 "Compile" n and "remove" it from it's dependents.
3 If nodes have not been "compiled" goto 1 .

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm

- Iterative algorithm
- Recursive algorithm
- Analysis

4 Example Problem

Recursive (DFS) algorithm

L = List (will contain topological ordering)
Mark all nodes white.
for each node n
if n is white visit (n)
function visit(node n)
mark n grey
for each node m with an edge from n to m do
if m is grey
error \# There is a cycle
if m is white visit (m)
mark n black add n to head of L

C++ Topological sort (DFS)

```
for (int i = 0; i < N; ++i)
    if (color[i] == WHITE)
        visit(i);
void visit(int v)
{
    color[v] = GREY;
    for (int u : graph[v])
        if (color == GREY)
        exit(1);
        else if (color[u] == WHITE)
        visit(u);
    color[v] = BLACK;
    L.push_back(v);
}
```


Explanation

Visit:
■ If a node has no dependencies (outgoing edges) "compile" it.

- Otherwise visit all it's dependents (neighbours) then "compile" it.

Outline

1 Directed Acyclic Graphs

- Explanation
- Examples

2 Topological orderings

3 Topsort Algorithm

- Iterative algorithm
- Recursive algorithm
- Analysis

4 Example Problem

Comparison between iterative and recursive algorithms

Iterative algorithm
■ Need to store number of incoming edges.
■ Has an explicit stack.

- Will not cause stack overflow.
- Check for cycles occurs after algorithm.

Recursive algorithm

- Needs a color array.
- Has an implicit stack.

■ Might cause stack overflow.
■ Check for cycles during occurs during algorithm.

Time Complexity

Time Complexity is $\Theta(V+E)$
■ Every vertex is visited once.

$$
\begin{aligned}
& \text { for (int i }=0 ; i<N ;++i) \\
& \text { if (color[i] == WHITE) } \\
& \text { visit }(i) ;
\end{aligned}
$$

- Each edge of every vertex checked once.
for (int u : graph[v])

Hamiltonian Path

Definition

A Hamiltonian Path is a path that traverses every vertex in a graph.

- Finding a Hamiltonian Path is an NP-Complete problem: there is no known polynomial time solution, but

Hamiltonian Path

Definition

A Hamiltonian Path is a path that traverses every vertex in a graph.

- Finding a Hamiltonian Path is an NP-Complete problem: there is no known polynomial time solution, but
■ Hamiltonian Path exists if and only if every adjacent pair of a topological ordering has an edge between them.
- Finding a Hamiltonian Path in a DAG is in P.

Outline

1 Directed Acyclic Graphs

－Explanation
－Examples

2 Topological orderings

3 Topsort Algorithm
■ Iterative algorithm
－Recursive algorithm
－Analysis
4 Example Problem

Example Problem

Example (Codeforces Round 290 div. 1 Problem A)

A list of names are written in lexicographical order, but not in a normal sense. Some modification to the order of letters in alphabet is needed so that the order of the names becomes lexicographical. Given a list of names, does there exist an order of letters in Latin alphabet such that the names are following in the lexicographical order. If so, you should find out any such order.

Sample Input Output

Input

3
rivest
shamir
adleman

Output
bcdefghijklmnopqrsatuvwxyz

Solution

Between every consecutive pair of words, draw and edge between the first two different letters. Output the topological ordering of that graph.

